

CS103A Handout 07

Winter 2020

Practice with Automata

DFAs, States, and Information

DFA design is a skill you can build over time. It takes a bit of practice to get the hang of it. To assist you in get-

ting started, we'd like you to walk through the following problems. Consider the alphabet Σ = {a, b} and con-

sider the following language L₁:

L₁ = { w ∈ Σ* | |w| ≡₅ 3 }

(Recall that |w| denotes the length of a string.)

i. Describe the language L₁ in your own words. Give three examples of strings over Σ that are in L₁ and

three examples of strings over Σ that are not in L₁.

ii. Design a DFA for L₁. To test it, try running it on the six test cases you developed in part (i) of this prob-

lem and make sure it works correctly.

One of the intuitions we gave for DFA design is that the only “memory” the DFA has is what current state it's in.

This means that it's often useful to design DFAs so that every state corresponds to some piece of information the

automaton remembers about the string it's seen so far.

iii. Look over your DFA from part (ii). For each state in that DFA, think about what strings will end up in

that state. What do they all have in common? Based on this, see if you can come up with an explanation for

what piece of information each state in the DFA remembers.

iv. The smallest DFA that you can build for this language has exactly five states. If your DFA from part (ii)

has fewer than five states, you should double-check it because it means that your automaton is incorrect. ☺ If

you have more than five states, see if you can find a smaller DFA for the language. If you do, repeat your analy-

sis from part (iii). What piece of information does each state correspond to?

Now, let's consider another language over Σ, which we'll call L₂:

L₂ = { w ∈ Σ* | w has an odd number of a's and a number of b's that's a multiple of three }

Previously, we had you design a DFA for a language, then reason about what each of the states means. Now,

we're going to ask you to do this in reverse order.

v. Any DFA for L₂ will use its states to remember some piece of information about the string it's seen so

far. What pieces of information would a DFA for L₂ need to remember about the string that it's seen so far? As a

hint, think about our DFA from class for the language of all strings with a number of 1’s that’s congruent to two

modulo three.

vi. Based on your answer to part (v), try designing a DFA for L₂ in the following way: create one state for

each possible piece of information the DFA would need to remember about the string it's seen so far, then add in

transitions based on how the information changes upon seeing one more character. As a hint, the DFA should

only need to remember one of six different pieces of information.

2 / 2

Designing DFAs

Below are a list of alphabets Σ and languages over those alphabets. For each language, design a DFA for that

language.

i. Let Σ = {a, b} and let L = {baa}. Design a DFA for L.

ii. Let Σ = {a, b} and let L = { w ∈ Σ* | w ≠ ε and the first and last character of w are the same }. Design a

DFA for L.

iii. Let Σ = {a, b} and let L = { w ∈ Σ* | w is a nonempty string whose characters alternate between a's and

b's }. Design a DFA whose language is L.

Designing NFAs

Below are a list of alphabets Σ and languages over those alphabets. For each language, design an NFA for that

language.

i. Let Σ = {a, b, c} and let L = { w ∈ Σ* | w ends in cab }. Design an NFA for L.

ii. Let Σ = {a, b, c} and let L = { w ∈ Σ* | some character in Σ appears at most twice in w }. Design an

NFA for L. As a note, you're going to want to use the guess-and-check model here; any DFA for this language

will require at least 64 states. (Hint: What would you do if you knew what character was going to appear at

most twice?)

Automata Transformations

In lecture, we saw three transformations on automata and regular expressions. This problem explores two of

those transformations.

i. Let Σ = {a, b} and let L = { w ∈ Σ* | the third-from-last character of w is a }. Design an NFA for L.

Your NFA should use at most four states.

ii. Using the subset construction, convert your NFA from part (i) into an equivalent DFA. (Although you

could just directly design a DFA for this language, we want you to practice using the subset construction to get a

sense of how it works.) You may find it useful to construct the transition table for the DFA rather than to write

out a state-transition diagram.

